
Log-Basecl Receiver-Reliable Multicast for Distributed Interactive Simulation

Hugh W. Holbrook* Sandeep K. Singhal David R. Cheriton

Department of Computer Science

Stanford University

Abstract

Reliable multicast communication is important in large-scale

distributed applications. For example, reliable multicast is

used to transmit terrain and environmental updates in dis-

tributed simulations. To date, proposed protocols have not

supported these applications’ requirements, which include

wide-area data distribution, low-latency packet loss detec-

tion and recovery, and minimal data and management over-

head within fine-grained multicast groups, each containing

a single data source.

In this paper, we introduce the notion of Log-Baseri

Receiver-retiable Multicast (LBRM) communication, and we

describe and evaluate a collection of log-based receiver reli-

able multicast opt imiz at ions that provide an efficient, scal-

able protocol for high-performance simulation applications.

We argue that these techniques provide value to a broader

range of applications and that the receiver-reliable model is

an appropriate one for communication in general.

1 Introduction

Multicast sources in certain distributed applications

have relatively low update rates yet have receivers that

expect low delay in receiving updates, even in the face

of loss. For instance, the dynamic terrain in a dis~

tributed virtual reality system such as Distributed In-

ter-active Strnulation (DIS) [11, 19] is normally updated

infrequently, yet hosts need to be notified of updates

within a fraction of a second or less to avoid perceptible

skew among the views of participants. In DIS, terrain

includes natural entities such as hills and trees, as well

as cultural artifacts like bridges and buildings. Consider

the example of a bridge that is destroyed during a vir-

tual military exercise. The bridge is completely static

* [holbrook ,singhal ,cheriton]@cs Stanford .EDU

Permission to make digital/hard copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or commercial advantage, the ACM copynghtkerver
notice, the title of the publication and Its date appear, and notice IS gwen
that copyright IS by permission of the Association for Computing Machinery,
Inc. (ACM). To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

SIGCOMM ’95 Cambridge, MA USA
0 1995 ACM 0-89791 -711-1 /95/0008 ,,$3,50

for some considerable length of time, but once it is de-

stroyed, each tank within visual range should “see” the

bridge as destroyed shortly afterward. A tank with stale

information about the bridge might try to drive over it,

for instance,

Dynamic terrain in DIS is a specific case of the

distributed cache update problem. The cached data

may not change for long periods of time, yet when it

does, all cached copies need to be notified quickly.

We use the term ~reshn ess to refer to the degree

that a receiver’s state is up to date with the source.

We are interested in providing reliable multicast to

applications where the update rate is low, but a high

degree of freshness is required even if packets are lost.

For example, the tank needs an up-to-date view of

the bridge, even though the bridge may not change

frequently.

High-frequency transmission of state updates guaran-

tees freshness in real-time protocols like vat [16]. How-

ever, it is not feasible to require DIS terrain entities to

send frequent updates because of the excessive network

traffic that would result. For example, next generation

DIS systems may include hundreds of thousands of ter-

rain objects. Similar scale may arise with entertainment

applications over the Internet. If each entity generated

a packet every 0.25 seconds, the network would be un-

necessarily congested.

In many internetwork configurations, congestion oc-

curs because of the limited bandwidth available on the

tail carcuds connecting individual sites to the backbone

network, as illustrated in Figure 1. These tail circuits

are likely to remain bottlenecks for the foreseeable fu-

ture because they are expensive like the backbone lines

(and unlike the local site lines), but unlike the backbone

lines, they are only cost-amortized over a single site, or

a small number of sites.

In current DIS, most of the bandwidth is consumed

by periodic appearance PD Us that apply the real-time

approach of continual state transmission for highly

active entities such as airplanes, tanks, and jeeps. Dead

328

q,
●✌✌Q ‘.

‘.,

c1
*‘“$:“-. . . . “.. .

,.. ●
,.,

a’””

●,.,.. ., .-4
. ..-.

,.,

. . . .-.
w’”.” ‘“..

e

,-

‘i

● SlmulatlonSMe

‘-. T1TadCircuit

- OC-3Backbone

Figure 1: Typical WAN Topology, Showing the Tail-Circuit

Bottleneck

reckoning [17] at each receiver dramatically reduces

the bandwidth demands of dynamic entities, but the

naturally high update rate of these entities still requires

a large amount of communication.

Positive acknowledgement protocols such as the Chang

and Maxemchuk algorithm [5] are unsuitable for the

type of multicast traffic we have in mind for several rea-

sons. First, a positive acknowledgement scheme used

with multicast can lead to an acknowledgment implo-

sion at the source and significant network load. Second,

positive acknowledgement requires that the source know

the identity of the receivers or subscribers. In many of

the cases of interest, the source does not know about

all of the receivers. Finally, positive acknowledgement

protocols delay reception of subsequent packets until a

missing packet has been recovered. This approach con-

flicts with the real-time requirement of favoring imme-

diate reception of the latest data over waiting for re-

transmission of an earlier missing packet.

In this paper, we describe our Log-Based Receiver-

reliable Multzcast (LBRM) protocol that provides scal-

able, timely dissemination of state updates, meeting the

needs of multicast sources like DIS terrain entities. We

also describe several optimizations to the basic LBRM

approach that further reduce the network load, the ex-

petted delay to recover a lost packet, and the load on

receivers. In discussing related work, we contrast this

protocol with the highly successful wb multicast session

protocol [8] and argue that wb is inadequate for the type

of large-scale applications that we are considering.

The next section describes the Log-Based Receiver-

reliable multicast protocol and three optimizations that

improve the protocol’s performance. Section 3 presents

our preliminary experience with an implementation of

the protocol. Section 4 describes applications of the

receiver-reliable multicast techniques. Section 5 com-

pares sender-reliable and receiver-reliable techniques,

and Section 6 compares and contrasts our techniques

with previous work in the area. We conclude with a

summary of the LBRM approach and directions for fu-

ture research.

2 Log-based Receiver-Reliability

In the basic receiver-reliable multicast protocol, the

source includes a sequence number in each packet and

defines a Maximum Idle Time (MaxIT) bound. The

source guarantees that it will transmit a packet at least

once every MaxIT interval. If the application provides

no data to send within MaxIT, the protocol generates

keep-alive or heartbeat packets that repeat the previous

sequence number (but not the associated data). A

receiver recognizes that it has lost a packet either when

it detects a gap in the sequence numbers of received

packets, or when it has not received a packet for MaxIT.

MaxIT determines the minimum freshness of the re-

ceiver’s state relative to the source. For entities with

strict real-time delivery requirements, MaxIT is small.

For DIS terrain entities that change infrequently, re-

cent research [3] suggests that a 1/4 second MaxIT is

required to provide acceptable real-time visual perfor-

mance.

In the Log-Based Receiver-reliable Multicast (LBRM)

approach, illustrated in Figure 2, reliability is provided

by a loggzng server that logs all transmitted packets

from the source. When a receiver detects a lost packet,

data
Source

~“1

Logging
Sewer

ack

retrans.

WAN

Best-efforts
Multicast

retrans.
request

:, ,: 0
Receivers

Figure 2: Log-based receiver-reliability

it requests the missing packet from the logging server.

The logging server need not be co-located with the

329

source host, but if the two are separated, then the source

must retain the data until it has received a positive

acknowledgement from the logging server. The logging

server may be replicated to provide greater reliability,

as discussed in Section 2.2.3.

The use of a logging server for reliability generalizes

the buffering of outstanding data performed by the

sender in a conventional transport protocol. In TCP,

the buffered data at the sender is effectively a log of

transmissions, from which acknowledged packets have

been flushed.

The protocol is receiver-reliable, in that each receiving

application defines its own reliability requirements. The

sender merely makes it possible, via the logging service,

for the receiver to recover a lost packet. 1 Receivers

are not obligated by the protocol to retrieve every lost

packet, and the sender does not check to confirm that

each receiver has every packet. Moreover, message

causality and ordering are strictly an application-level

concern for the receiver [6].

The length of time that the logging server must

store a packet is application-specific. Some applications

may only store packets until their “useful lifetime” has

expired. Other applications with stronger persistence

needs may log all packets, writing them to disk once

in-memory buffers are full.

In the LBRM approach, three resources must be

carefully managed: network bandwidth (particularly on

the congested tail circuits), CPU load on the receiving

hosts, and server load.

In the following sections, we present three techniques

for managing network, receiver, and server load in large-

scale, wide-area, distributed simulations using LBRM.

First, we discuss a variable heartbeat mechanism that

provides fast detection of packet loss while, in the DIS

environment, using 1/50 of the heartbeat bandwidth

of the basic receiver-reliable approach. Second, we

describe a distributed logging service that reduces

the number of retransmission requests, resulting in

lower network and server load. Last, we describe a

statistical loss-detection mechanism that dynamically

chooses between multicast and unicast retransmission

strategies to improves recovery time and minimize

network bandwidth with large numbers of sites.

2.1 Variable Heartbeat for Real-time

Delivery

The variable heartbeat scheme clusters heartbeat trans-

missions in the interval immediately following a data

transmission, rather than spreading them out evenly

~The receiver can estimate how much information it has lost

either based on the number of data packets it is missing or based

on the amount of time that has elapsed since the last packet was

received.

across the idle period between transmissions. Using this

technique, we provide sub-second loss detection of iso-

lated packet losses. For longer periods of network lossi-

ness, the loss detection interval is bounded by the length

of the Iossiness. We achieve fast loss detection without

requiring a high heartbeat rate when the channel is idle.

In our scheme, each sender maintains an inter-

heartbeat time h, which is the interval between the

previous packet (heartbeat or data) transmission and

the next heartbeat transmission. This interval is reset

every time the application sends a data packet. Every

sender also has a minimum inter-heartbeat time hmin

and a maximum inter-heartbeat time hmaz,

The variation in h is the key to achieving fast

loss detection with low overhead, When the sender

transmits a data packet, it initializes the inter-heartbeat

time h to hmin. After every subsequent heartbeat

packet is sent, the value of h is doubled.z The inter-

heartbeat interval increases until it reaches hmaz. When

another data packet is sent, h is immediately reset to

h man . A sample distribution of heartbeat packets is

shown in Figure 3.

hm,..,!,!!

1 I time .

““’W$ +“
Data Data
Packet Packet

Figure 3: Timeline showing the distribution of heartbeat

packets between data packet transmissions

2.1.1 Performance Analysis

The variable heartbeat algorithm provides loss detection

within a period of hm%n after transient, single-packet

losses.3 Also, after longer periods of network loss, it

bounds the loss detection time to a small multiple (2 in

our implementation) of the loss period duration.

Consider a simple “burst” model of congestion,

where congestion is parameterized in terms of its

duration. Suppose that the network experiences a burst

congestion period of duration tbUr~~ during which a

given host receives no packets. Assume further that

2 Note that in general, h could increase by any back OH multiple,

2, 3, .5, or by any arbitrary function.

3 We define the loss detection interval to be the period between

when the packet would normally have arrived and when the loss

was detected at the receiver. For the purposes of this section, we

assume that network delay is independent of load and that the

delay between two hosts is invariant. While the effect of network

delay is important, it would complicate the discussion without

seriously affecting the basic analysis.

330

before and after the burst loss period, the host receives

100% of the sender’s transmissions. Although hmaz

represents the maximum delay before a receiver learns

of a lost data packet, this maximum delay is only

encountered under extremely poor network conditions.

The worst-case scenario for loss-detection occurs

when a data packet is sent at the start of the burst

loss period. If the burst error length is small (less than

hmin), (i.e., an isolated loss), then the lost packet is

discovered when the first heartbeat packet arrives after

hmim. If the burst error is longer, then a heartbeat will

arrive no longer than tbur~t after the network returns to

normal. In this case, the maximum time between data

packet transmission and receiver discovery of packet loss

k 2 X ~bur~t 4 (or hmaz, whichever is smaller).

Thus, isolated losses and transient errors are discov-

ered quickly and longer burst errors are discovered in

time bounded by min(t~u.,t, hma.).

2.1.2 Comparison to a Fixed Heartbeat

Scheme

The number of packets generated by the variable

heartbeat protocol is always less than that of the

fixed-heartbeat scheme, when hmin is set to the fixed

heartbeat interval. When the basic transmission rate is

low, as is the case for DIS terrain entities, the variable

heartbeat scheme has a significant advantage.

Consider a DIS scenario, loosely based on the US mil-

itary’s current simulation plans [2]. The scenario in-

volves 100,000 dynamic entities (tanks, planes, ships,

infantry), and an equal number of aggregate terrain en-

tities (rocks, trees, fences, bridges). If each aggregate

terrain entity has a real-time update requirement of 1/4

second, then with a fixed heartbeat, each would gener-

ate 4 packets per second, for a total of 400, 000 packets

per second. In current DIS simulations, dynamic en-

tities generate one packet per second, on average [20],

which results in 100, 000 packets per second. Although

terrain entities desire a 1/4 second freshness guarantee,

they generally change state infrequently. If we estimate

that the state changes once every two minutes, then

the periodic heartbeats account for effectively all of the

terrain updates and for 4/5 of the simulation’s 500,000

packets per second.

Assuming a 1/4 second desired recovery time, Fig-

ure 4 compares the variable heartbeat rate to the fixed

heartbeat protocol as a function of the interval between

data packets, dt. As dt increases, the variable heartbeat

transmission rate approaches I/hmaZ, but the fixed-rate

protocol continues to approach I/hmin, unaffected by

the increase in dt. If dt < l/h~in, no heartbeats a-e

4 If h is increasing by a multiple k other than 2, then the loss

recovery time would be k . t~ur~t.

Inter-packet delta (dt)

Figure 4: Fixed and Variable Heartbeat Overhead Rates

(h~i~ = 0.25, h~as = 32, backoff = 2)

transmitted under either scheme, as every heartbeat

packet is preempted by the next data packet.

Figure 5 shows the ratio of the heartbeat rates of the

two approaches, using the same algorithm parameters

as in Figure 4. As the interval between data packets

grows large relative to hmin, the savings of the variable

heartbeat scheme also grows. The marked point on the

graph corresponds to a DIS scenario in which the update

rate is once every 120 seconds. At this point the variable

heartbeat reduces heartbeat bandwidth by a factor of

53.4 over a fixed heartbeat.

Table 1 shows how this ratio is affected by the backoff

parameter, keeping all other algorithm parameters

constant. Increasing the backoff parameter results in a

Backoff Overhead (‘lxe
&)

1.5 34.4

2.0 53.3

2.5 65.8

3.0 74.8

3.5 81.7

4.0 87.3

Table 1: Ratio of Fixed Heartbeat Overhead to Variable

Heartbeat Overhead as the Backoff Parameter Changes

larger loss detection interval when tb~~$t > hmin, but it

331

,

1 Packetil 20 seconds

‘:~
“0.06 0.25 1.00 4.00 16.00 64.00 256.00

Inter-packet delta (dt)

Figure 5: Overhead(Fixed) /Overhead(Variable). (h~,~ =

0.25, hm.z = 32, backoff = 2)

does yield additional bandwidth savings. The reduction

in overhead is moderately sensitive to the chosen backoff

value.

2.2 Distributed Logging

As illustrated in Figure 6, distributed logging adds

logging capabilities at client sites. For our purposes,

a site is a topologically localized part of the network

that is defined by the particular multicast application—

it might be a set of hosts on a network tail circuit, a

LAN, or even a single host.

2.2.1 Secondary Logging Servers

Each site’s logging server logs packets from the multi-

cast source. These logging servers call back to the pri-

mary logging server to retrieve a lost packet. Each re-

ceiving application requests retransmissions from its lo-

cal secondary logging service, rather than directly from

the source’s prvmary log service.5 In this way, only one

retransmission request to the primary logging server

originates from each site, rather than one from each

group member, as illustrated in Figure 7. In cases where

a packet is lost within a site, recovery can be handled by

the local logging server; in this case, recovery introduces

no load on the WAN or tail circuits.

5 When multicast sources are located at many sites, as is the

case in DIS, a single logging process may serve as the primary
logger for one group and as the secondary logger for another.

.
:
:
:
:
:
:
:

)--11 -
*.=.......

Best-efforts
Multicast retrans.

request

.. ..

.-

“’a %?” ~

Receivers request :
:. Site 1 i.
Y .

.

Figure 6: Distributed Logging Service Architecture

The secondary logging service is purely an optimiza-

tion over having each node directly access the primary

logging server. If the secondary logging service fails, a

receiver requests retransmissions directly from the pri-

mary (or next-higher-level) logging server. Moreover,

the multicast source only receives an acknowledgement

from the primary server signaling that the data packet

can be discarded; the source is unaware of the secondary

services’ existence.

A dedicated machine at each site may be specially

configured for the logging task in the same way that a

file server or a compute server is configured for its task.

Such a designated logger might have a fast network

connection and a large memory and disk. An alternative

implementation could provide distributed logging at

each site by rotating the role of log server among the

local hosts in order to distribute the load, similar to

the Chang and Maxemchuk [5] algorithm, except that

the multicast traffic originates from a source outside the

virtual ring.

A variety of resource discovery techniques are possible

for locating a secondary logging server. In our imple-

mentation, each host uses a series of scoped multicast

discovery queries to locate a nearby logging service. If

no sufficiently close logging service is found, then the

receiver may either initiate a secondary logging process

locally or take steps to initiate one on another nearby

machine. Alternatively, each host may be statically con-

figured with the location of the site’s logging servers,

much like it is configured with the location of the local

name server, time server, etc.

A secondary logging server may decide to re-multicast

a packet, rather then sending point-to-point retransmis-

sion, if it decides that a significant number of clients

332

@I sender

O receiver

~ primary log server

@ secondary log server

\
retransmission request

(a) (b)

Figure 7: Retransmission Requests Under (a) Centralized Logging and (b) Distributed Logging

have lost the packet. This decision is based on the num-

ber of multicast requests it has received and whether or

not the secondary logger itself received the packet. By

setting the TTL (time-to-live) field in the retransmis-

sion to an appropriately chosen value, the local server

can limit the retransmission’s scope to the local site.

Within a site, we do not consider NACK implosion to

be a problem because each secondary logger is presumed

to serve a reasonably small number of receivers and be-

cause intra-site links are assumed to be relatively un-

contested.

2.2.2 Performance Analysis

Distributed logging reduces NACK and retransmission

bandwidth, as well as retransmission latency, when

compared to a centralized packet recovery scheme.

In order to quantify these effects in the distributed

simulation environment, we assume that a particular

receiver-reliable terrain update group has at least

1,000 subscribing entities. (In “hot-spot” areas of the

simulation, this number is likely to be even higher, and

proposed non-DIS applications of reliable multicast—

such as dissemination of stock quotes or traffic reports—

have potential audiences in the hundreds of thousands.)

The 1,000 subscribers are distributed across 50 sites

with 20 participating receivers at each site. This

is a slightly larger number of sites than is currently

under consideration for DIS simulations but is slightly

smaller than what we envision for other future wide-area

dissemination applications.

Distributed logging reduces NACK and retransmis-

sion bandwidth when a large fraction of the group loses

packets. Figure 1 illustrates a common situation in

the DIS network topology where congestion on the in-

coming bottleneck (Tl) tail circuit causes packet loss

at an entire site. Distributed logging cuts the num-

ber of NACKS transmitted across the tail circuit and

the WAN from 20 (one per receiver at the site) to 1

(from the site’s secondary logging server). The reduc-

tion in NACK requests proportionately reduces the load

upon the primary logging server. Section 2.3 discusses

a NACK reduction technique designed for groups con-

taining many subscribing sites.

Distributed logging also reduces retransmission la-

tency for packets that are lost within a site, because the

round-trip time to the secondary logging server is much

shorter than that to the primary logging server. This

effect is becoming increasingly critical as DIS sites be-

come more widely distributed. Some simple experimen-

tation with the ping program reveals that a secondary

logging server that is a few miles away and through a

small number of gateways might typically be at a dis-

tance of 3-4 milliseconds RTT from the source, while a

primary logging server located 1,500 miles away across

10 internetworking routers might be at a distance of 80

milliseconds RTT. By getting a retransmission from the

local logging server, we can reduce the retransmission

latency by an order of magnitude.

LAN bandwidth and local resources are expected to

remain relatively plentiful and cheap, while tail circuit

(LAN-WAN) connections are likely to become more

costly and/or more congested in the future. Distributed

logging recognizes and exploits this trend.

2.2.3 Recovery from Primary Log Failure

If the primary logging server fails, receivers may not be

able to recover all lost messages. To provide greater

fault tolerance for these situations, we replicate the

primary logging server. As before, the source reliably

transmits packets to the primary logging server, who

333

acknowledges their receipt. The primary logging server,

in turn, is responsible for reliably transmitting updates

to the replicated servers,

When the primary logger acknowledges a packet

to the source, it includes two sequence numbers: a

primary logger sequence number and a replicated logger

sequence number. When an acknowledgement arrives

from the primary logger, the sender’s application may

continue processing. However, in order to guarantee

fault-tolerance, it cannot discard the data until it knows

that a replica has received the packet.

When a primary logger failure occurs, the source sim-

ply locates the logging server replica holding the most

up-to-date packets—that is, the replica associated with

the most recent replicated logger sequence number. The

source reliably transmits to the replica any packets be-

ing held in its buffer. From that point, the replica

is guaranteed to hold a complete packet history and

can proceed as the primary logging server. Complete

log failure therefore can only occur when two logging

servers (the primary and the most up-to-date replica)

fail simultaneously—a rare event. If even greater re-

liability is needed, then the replicated logger sequence

number can represent the maximum sequential acknowl-

edgement from the second-most up-to-date replica, and

so forth.

To support failure recovery, each secondary logger

and receiver that directly accesses the primary logger

treats the primary logger address as a cached value.

Whenever the primary logger becomes inaccessible, the

receivers contact the source who can furnish the identity

of the current primary logger.

2.3 Statistical Acknowledgement for

Selecting a Retransmission Strategy

Statzsttcal acknowledgement is used to select between

multicast retransmission and possibly multiple unicast

transmissions when packets are lost. When a packet

is lost by a number of sites, multicasting the retrans-

mission immediately uses less network bandwidth and

results in faster delivery time than servicing individual

retransmission requests via unicast. However, at the

other extreme, if a packet is lost at a single site, it is

more efficient to unicast to that single site and not load

the network and other sites with a multicast retrans-

mission.

With statistical acknowledgement, the source proba-

bilistzcally selects a small random set of secondary log-

ging servers to acknowledge each transmitted packet (by

a unicast packet sent back to the source). The source

chooses between multicast retransmission and unicast

transmission based on the number of acknowledgements

it receives from this set. The source selects a new set

of acknowledging log servers periodically, i.e. every new

epoch. The following subsections elaborate.

2.3.1 Epochs

The multicast transmission is divided into epochs. Be-

fore the start of each epoch, the source chooses a num-

ber of positive acknowledgements (k) that are desired

for each data packet, where k is a typically small num-

ber relative to the total number of sites; analysis sug-

gests that between 5 and 20 ACKS is appropriate. The

source computes a logger acknowledgement probability

pack based on an estimate of the number of active sec-

ondary loggers, ~~1. (The next section presents an algo-

rithm for estimating the ~~1.) The source transmits the

newly selected value of pack and the new epoch number

in an Acker Selectton Packet. Each secondary logger

responds to the Acker Selection Packet with probability

pack. ‘The responding loggers are the Designated Ackers

which then unicast to the source an acknowledgement

for each packet of the epoch they receive. Either all

data packets include the current epoch number so that

Designated Ackers know which packets they must ac-

knowledge or else the source keeps track of the Desig-

nated Ackers for an epoch and expects some overlap in

acking between epochs.

After receiving acks from each new Designated Acker,

the sender knows exactly how many acknowledgements

to expect for each data packet in the epoch. The source

then switches to the new epoch for newly transmitted

data packets.

Figure 8 shows the packets sent at the beginning

of a new epoch. An initial Acker Selection Packet is

sent and three designated ackers respond. Next, the

source sends data packet #33 in the new epoch, but

only receives two out of three ACKS. Consequently, the

source immediately re-multicasts the packet, and this

time receives the expected three ACKS.

After the source sends an Acker Selection Packet, it

must at some point stop waiting for ACKS from the

new Designated Loggers, and start the new epoch. The

sender needs to wait for a period that is long enough to

allow most secondary loggers to respond. Future ACKS

from secondary loggers that do not respond within this

interval are not considered. This interval should be long

enough to include ACKS from all but the most highly

delayed members of the multicast group.

2.3.2 Retransmission Strategy

When a source receives acknowledgements from all its

Designated Ackers, it assumes that multicast retrans-

mission is not needed, and simply waits for individual

retransmission requests. It can resort to a multicast

retransmission if it receives a significant number of re-

transmission requests. For example, if there are 20 Des-

ignated Ackers in a configuration with 500 sites, it is

334

:
Epochn~ Epochn+l

i

AS~+l ack ~#SS ack #33 ack time
.

Source
+

:
:
:
:
:
:
:. .

Receivers

‘m

Figure 8: Timeline showing the operation of probabilistic

selection and statistical acking

possible, although unlikely, to receive all the acknowl-

edgements yet have 480 sites that missed the data.

When a source is missing acknowledgements from one

or more of its Designated Ackers, it selects to immedi-

ately multicast a retransmission if the number of miss-

ing acknowledgements represents a significant number

of sites. For example, with a 500 site configuration,

each Designated Acker represents 25 sites so multicast

is warranted if even a single acknowledgement is lost.

However, with a 20 site configuration, it is feasible for

each logging server to acknowledge.

This strategy is viewed as an optimization over mul-

ticasting every retransmission, which is the safest ap-

proach otherwise, given the cost of individual unicasts

in the case of packet loss high in the multicast distribu-

tion tree. We recognize that multicast retransmissions

will occur with this scheme that are not warranted.

For example, missing acknowledgements arise when a

secondary logger fails, becomes disconnected from the

network, or leaves the multicast group. However, such

events are rare, and their effects are limited to the cur-

rent epoch.

Packet buffering and round-trip time estimation use

techniques similar to those in TCP and other transport

protocols. The source must retain each data packet for

an interval t~~i~ after sending before it can determine

if the packet should be re-multicast. During this

interval, it collects and counts ACKS received from the

Designated Ackers. If t wait is too short, the sender may

be led to believe that a packet is lost, when in fact its

ACKS are merely delayed. If tw.i~is too long, however,

the sender unnecessarily delays the detection of lost

packets, increasing the chance of a NACK implosion.

An initial value for -tWaltcan be chosen at the start

of an epoch based on the value during the previous

epoch or based on some prior knowledge, Thereafter,

the sender adjusts tW.,t on every data packet using an

exponentially-converging round-trip estimator:

t~att= c1 x ?’ttnew+ (1 – cl) x twait.

The value of rttn~~ is chosen to be the time at which the

last ACK to a data packet arrives, up to time 2 x twai~

after each Acker Selection Packet. The 2 x tWait time

limit allows the source to, at some point, assert that

an ACK was lost. If t ~~it is less than the minimum

heartbeat time, hmin, then a transmission error is

discovered before any retransmission requests are sent.

If, instead, L~it > h~in, the secondary logging servers

should delay their retransmission requests until the

primary logging server has had a chance to re-multicast

the packet. This occurs at twait– hmin after the first

heartbeat has arrived.

2.3.3 Group Size Estimation

Our basic algorithm for generating an initial secondary

logging server count N,f is based a modification of

a technique described by Bolot, Turletti, and Wake-

man [4]. We build upon their basic protocol in which a

sender initiates a series of rounds wherein the secondary

loggers are probed, using an increasing ACK probability

p~~~ to avoid causing an ACK implosion on the sender.

Once enough ACKS have been received to make a fairly

confident estimate of ~~1, the probing stops. As a mod-

est extension to the Bolot scheme, the last paCk probe

may be repeated several times to increase the accuracy

of the IV$r estimate. Each successive probe increases the

accuracy, as shown in Table 2.

Probe Standard Deviation

Count of N,l Estimate

1 !X.kl@J = 1.000al
pack

Table 2 Accuracy of NS1 Estimation as Number of Probes in-

creases for Actual N Secondary Loggers and Acknowledgement

Probability pack

Bolot, Turletti, and Wakeman’s protocol demands

that the secondary logger estimation algorithm be

repeated periodically. However, with the statistical

acknowledgement scheme, the iV~t estimation need only

be run at the beginning of a multicast transmission

until the number of secondary loggers has stablized.

Afterward, responses to each Acker Selection Packet

335

effectively serve as a secondary logger probe that is used

to continually refine the accuracy of the N,r estimate.

The following algorithm dynamically maintains the

IVsl estimate. Assume roughly k ACKS are expected

on each Acker Selection Packet, the sender has an

initial group size estimate of N$l loggers, and the Acker

Selection Packet carries an ACK probability of p.ck =

k/IV,l. After transmitting a data packet, the source

receives k’ ACKS. Using the following formula, the

source revises its ~~~ estimate:

N;l = (1 – a) x N,{ + a x k’/pack

where a is some small number, say 1/8. The new ACK

probability is p~Ck = k/fV~l. This approach is similar

to Jacobson’s TCP Round-’llip-Time estimator [12].

Statistical variations in k’ cause minimal variation in

IV,r or pack, but the algorithm dynamically adjusts as

secondary loggers enter and leave the group.

Due to software or hardware faults, a logger might

disrupt the system by, for example, responding to every

Acker Selection Packet. The source can easily track

these faults by keeping a histogram or a timed “hotlist”

of recently-active Designated Ackers. Once a faulty

logger has been identified, its future ACKS can be

ignored.

2.3.4 Scalability Considerations

Statistical acknowledgement quickly detects widespread

packet loss and retransmits the lost data within one

round-trip time. In most cases, this will prevent every

logging server from simultaneously requesting retrans-

mission from the sender. For future DIS networks that

encompass sites in the US and in Europe, 50 sites is

a conservative estimate. Without these techniques, the

potential for NACK implosion in networks of this size

is severe. Statistical acknowledgement prevents the im-

plosion in the common case where isolated packets are

lost on the sender’s outgoing tail circuit due to one-time

transmission errors or due to short-term congestion.

3 Implementation Experience

We have implemented the Log-Based Receiver-Reliable

protocol with the variable heartbeat and distributed

logging extensions in the Unix environment. The scoped

multicast technique discussed in Section 2.2.1 is used for

logging server discovery. Our implementation does not

yet implement statistical acknowledgment and does not

yet deal with logging server failures.

The loggers are stand-alone Unix processes. The

sender and receiver protocols are C++ class libraries

linked into the LBRM application. The entire imple-

mentation is 4)867 lines of code. Much of the code is

reusable across different components of the system be-

cause of the recursive nature of the distributed logging

architecture. Our implementation experience indicates

that the overall design complexity is modest.

We measured the response time and CPU load of a

local secondary logger responding to logging requests.

All measurements were made on an IBM RS/6000 model

370, rated at 70 integer SPEC marks, running AIX

3.2.5, with a 10 Mbit Ethernet adapter. The involved

CPUS and the network were otherwise unloaded.

Table 3 shows measurements of the response time to

request and retrieve a 128-byte packet from a logging

server located on the local Ethernet. This is effectively

the cost of an RPC to the logging server. This

Operation I Time (psecs)

G

Table 3. Secondary Logging Server Response Time

measurement includes the effects of server processing,

network transmission over the 10 Mbit Ethernet, and

network interrupt handling and context switching.

These measurements suggest that loss detection (i.e. the

250 msec heartbeat packet) and network transmission

(for requests to remote servers), rather than server

processing, dominate the packet loss and recovery

latency.

We also measured the maximum rate at which a log-

ging server could respond to retransmission requests

without dropping requests. A server can receive, pro-

cess, and reply to one request every 630 microseconds,

or approximately 1587 requests per second. The per-

packet servicing time is composed primarily of server

processing time and OS time spent servicing each net-

work interrupt. No process-to-process context switch

occurs if the server is saturated because the server is

constantly running on the CPU. These measurements

indicate that a server with hundreds of clients is not

unduly loaded. The server can receive and process 100

requests for a packet in memory in 0.063 seconds. Our

investigation indicates that logging server load is not

severe under normal operating circumstances, even if

hundreds of nearly simult aneous retransmission requests

arrive,

4 Applications of LBRM

The scalability and fast loss recovery of the LBRM

protocol make it well-suited to applications in which

each host actively disseminates time-sensitive informa-

336

tion and each receiver is interested in a subset of sources.

In this section, we describe some of these non-simulation

applications, besides Distributed Interactive Simula-

tion, including one that we have implemented in a pre-

liminary fashion.

4.1 Traffic Report and Stock Quote

Dissemination

Reliable multicast is particularly well-suited for appli-

cations in which clients obtain and cache data from a

server. Whenever the server updates the data, it needs

to reliably invalidate the caches held by the clients and

possibly refresh those caches with updated information.

Examples of such “information dissemination” applica-

tions arise for distributing real-time stock quotes to bro-

kers’ terminals (and eventually to the public at large)

and providing up-to-date traffic report maps to a client

display mounted in an automobile dashboard.

4.2 File Caching

LBRM is an alternative to leasing [9] for fault-tolerant

distributed file caching. Rather than having explicit

leases on the files in its cache, each client subscribes

to a LBRM channel from the server on which to

(reliably) receive invalidation notifications. If the client

detects a failure of its connection to the server (by the

absence of heartbeats or other traffic), it invalidates its

cache; this action occurs in time comparable to a lease

timeout. LBRM eliminates much of the bookkeeping

and maintenance of timeouts required in the leasing

approach and instead relies on the reliability and failure

notification of the LBRM server channel, one per

fileserver.

4.3 Cached WWW Page Invalidation

World-Wide-Web browsers, such as MosaicTM, keep

a cache of recently visited HTML pages, but those

caches are not automatically invalidated or refreshed

when the source (server) document changes. HTML

3.0 supports dynamically changing HTML pages by

allowing clients to periodically poll servers for updates

or by maintaining an open TCP connection between the

server and each client. However, these approaches to

page invalidation offer limited scalability because they

place a heavy load on both the server and the network.

To demonstrate the applicability of the LBRM algo-

rithm in this environment, we implemented the protocol

in a version of the Mosaic browser. Each HTML file is

associated with a multicast address. When the Mosaic

client displays this HTML file, it subscribes to the as-

sociated multicast address. Whenever the HTTP server

detects that one of the local HTML documents has been

modified, it reliably transmits an update announcement

to the associated multicast group. In response to the

invalidation message, the client highlights the RELOAD

button, informing the user to reload the page from the

server. A simple extension allows automatic dissemina-

tion of the updated document over the multicast group.

Appendix A describes the implementation in more de-

tail.

4.4 Factory Automation

In a factory automation system, sensors on the factory

floor capture the status of equipment. Data from these

sensors must be transmitted reliably to the many sys-

tems that monitor factory performance, maintenance,

etc. LBRM is particularly well-suited to this applica-

tion domain [10]:

Factory automation typically requires that all trans-

actions and tasks are logged for accurate record-keeping.

LBRM already provides this logging as part of the lost

packet recovery mechanism. Moreover, LBRM supports

simple data sensors because it imposes minimal buffer-

ing and computation requirements on those sources.

Factory automation systems must also allow users

to dynamically reconfigure the system to change how

data flows throughout the system. Receiver-reliable

multicast eliminates “receiver lists” from source hosts

and thereby allows new components to be introduced

dynamically into the system without the need for an

explicit connection setup phase.

Finally, these factory systems are making increased

use of mobile devices to allow workers to monitor

production from the factory floor. As a rule, these

devices experience intermittent network connectivity,

yet they still need to receive data reliably. LBRM is

well-suited for this environment. When a mobile host

reconnects, it can recover any lost data from a logging

server without interfering with the other receivers or

affecting the on-going data flow from the source.

5 Receiver-Reliable Versus

Sender-Reliable Communication

Receiver-reliable communication is better suited for

real-time multicast applications than conventional sender-

reliable multicast for several reasons. A recezver-relzable

protocol allows a receiver to know whether or not it has

received all packets sent before some relatively recent

time t, and it provides a means to recover missing pack-

ets; the application chooses whether or not to get these

packets. It neither guarantees that packets are delivered

to all receivers nor guarantees that they are delivered

in-order. Imposing these properties would incur delay,

even if the application does not want it.

Receiver-reliability is frequently appropriate when

multicast communication is used for notification or

dissemination of information. In these dissemination-

oriented systems, the server multicasts information to

337

a set of clients asynchronously, rather than responding

synchronously to requests from the clients. The sender

makes the information available, but only the receiver

is really concerned with getting the data. By analogy,

television is such a dissemination model. The television

station does not need or want positive confirmation

from each receiver. Rather, the receiver is responsible

for detecting adequate reception and “complaining” if

it is inadequate. Many multicast applications have a

similar nature. The receiver needs to know whether the

information it has is up-to-date (or at least sufficiently

recent to satisfy its application semantics).

Conventional transport protocols provide sender-

reliable communication in which the sender knows that

the receivers have received the transmitted data, at least

up to some time in the recent past. The “knowledge”

is provided by positive acknowledgements sent from the

receiver to the sender, confirming receipt of the data.

However, the receipt of a positive acknowledgment

from the transport level of the remote client does

not guarantee end-to-end reliability. Application-level

reliability is provided only by an acknowledgement

that was generated after the data was received and

processed at the receiver’s application level [15]. In a

remote procedure call (RPC) system, this end-to-end

requirement is provided by receipt of the return packet

for the call.

Acknowledgments in conventional transport protocols

are really resource management actions to assist the

sender in managing its resources and processing. In

particular, an acknowledgement primarily signals that

the sender’s transport module can reclaim the buffer

space holding the data for potential retransmission.

The timing of the acknowledgement, along with other

information in the packet such as the flow control

window size, help the sender regulate its rate of

transmission to avoid wasting processing time and

network bandwidth by sending packets too quickly or

too slowly.

As part of our future work, we are exploring the

use of the selective acking mechanism as a resource

management tool; in particular, we are looking into use

statistical acknowledgement information to slow down

the sender during periods of high loss.

6 Related Work

Several researchers have proposed reliable multicast

protocols, but most of these are not well-suited for large-

scale information dissemination applications. Cheriton

and Zwaenepoel)s [7] k-reliable multicast simply gen-

eralizes the conventional ail--relzable semantics that are

usually implemented using sender-reliable techniques.

Chang and Maxemchuk [5] describe several techniques

to reduce acknowledgements at the cost of increased de-

lay in lost packet detection. Causally and totally or-

dered multicast protocols such as those in Isis [14] and

MTP [1] introduce additional latency to enforce order-

ing of updates across multiple sources, so they are un-

suitable for use in real-time applications such as DIS.

Our work is closest to that of Floyd, Jacobson, Liu,

McCanne and Zhang [13, 8] on lightweight multicast

sessions and the wb reliable multicast protocol. The

wb protocol was initially designed to support a shared

whiteboard application.

A major difference between LBRM and wb lies in

their approaches to packet recovery for large multicast

groups. LBRM takes an organized approach to recov-

ery, while wb is fundamentally unorganized. LBRM

organizes retransmission requests into a hierarchy, by

having a receiver request retransmissions only from “an-

cestors” in the logging hierarchy. Wb imposes no such

structure; a receiver requests lost packets from everyone

in the group, and anyone with the packet may respond.

Consequently, the wb recovery algorithm is highly fault

tolerant: if any reachable member of the group has the

lost packet, then the requestor eventually gets it. How-

ever, this fault tolerance comes at the cost of redun-

dant retransmission multicasts. Whenever a host loses a

packet, at least one repair request is multicast to the en-

tire group, even if the losses are limited to hosts within

a single site. Moreover, between one and five responses

are multicast to the entire group for each repair request.

A problem with wb-style recovery is that it introduces

the “crying baby” problem in the case of a single packet

drop. That is, if a single link to one member of the group

has a high error rate, then all members of the multicast

group must contend with a multicast request and one or

more multicast responses. For example, a receiver may

be behind a poor wireless connection or a congested

SLIP line or have faulty network hardware. On the

other hand, LBRM does not suffer from the crying baby

problem because retransmission requests and repairs

are not multicast unless a number of receivers lost the

packet.

LBRM improves recovery time compared with wb by

organizing packet recovery into a hierarchy. After a loss

is detected, an LBRM receiver immediately requests a

packet from its local logging server. The total recovery

delay equals the RTT to the nearest logger in the

hierarchy that has the packet, plus processing delays at

the loggers. In wb, because repairs are multicast to the

entire group, a receiver must delay its retransmission

request for a time proportional to the RTT delay to

the source (in order to avoid duplicate requests), even

if the loss occurred locally. Responders also delay

their responses to avoid duplicate responses. In wb,

the last receiver to lose a packet recovers from a loss

338

in approximately 3 x RTT (where RTT measures the

network round trip time between the receiver and the

packet source).6

Organizing the packet recovery in LBRM comes at

some cost in complexity. A logger process must be

maintained at every group member’s site, and added

protocol complexity is required to handle logger failure.

There is also an additional protocol for the sender

to communicate with the primary logger. A wb-

style reliable multicast group does not require these

mechanisms. However, based on our implementation

experience, the protocol complexity is not significant in

practice.

In a group with a low data rate, wb does not provide

fast loss detection, but rather, it relies on periodic

multicast session messages occurring at fixed intervals

to discover losses—similar to the basic “fixed heartbeat”

scheme discussed in Section 2. However, wb could be

extended to use our variable heartbeat technique for

session messages, providing comparable loss detection

performance.

7 Conclusion

Our Log-Based Receiver-reliable Multicast (LBRM)

protocol supports large-scale information dissemination

in applications like DIS that demand low-latency data

recovery. We have described three techniques that

benefit real-time dissemination applications:

A variable heartbeat rate bounds the time to detect

a lost packet, and introduces a limited overhead.

The technique reduces heartbeat packet overhead by

roughly a factor of 50 over a fixed heartbeat scheme

for an expected DIS scenario.

Distributed logging provides fast recovery of lost

packets and provides a scalable solution to the

NACK implosion problem. For example, in the

expected DIS scenario, NACK traffic at the primary

logging server is reduced from 20 per site to 1 per

site. Lost packets are recovered one RTT from the

nearest logging server in the hierarchy that received

the packet.

Statistical acknowledgements allow the sender to dy-

namically determine whether packet losses are best

served by immediately re-multicasting the data or

by unicast retransmission by the primary logging

server. The statistical technique minimizes recovery

delay without imposing significant bandwidth over-

head.

~It should & possible to improve wb’s recovery thUe for local

losses by adding locally-scoped multicast retransmission requests.

The receiver-reliable communication design allows the

source to release buffering resources as soon as data

is acknowledged by the primary logging server; conse-

quently, the source is isolated from local network behav-

ior at the receivers. The protocol provides meaningful

end-to-end reliability semantics in which the receiving

host can determine with confidence whether all data has

arrived.

Although our protocol is targeted primarily at high-

performance simulation applications, we have identified

several other potential application areas for our work,

including stock quote dissemination to brokers and the

public, traffic reports to on-board displays in automo-

biles, and factory automation and monitoring. These

applications benefit from LBRM’s built-in support for

data logging, dynamic reconfiguration, and intermittent

connectivity.

We are considering several promising directions for

further research:

A separate multicast channel could be used for re-

transmission. The sender would retransmit every

packet on the retransmission channel n times, using

an exponential backoff scheme similar to that used

for heartbeat packets. A client would recover a lost

transmission by subscribing to the retransmission

channel, rather than requesting the packet. Log-

ging servers would provide retransmissions of pack-

ets that were no longer being transmitted on the re-

transmission channel. In order to use this technique

for real-time data, fast multicast group subscription

would be required.

A multi-level hierarchy of logging servers may be

used to further reduce NACK bandwidth in large

groups.

For small packets, it might be cost-effective to

retransmit the original packet instead of an empty

heartbeat packet. This would reduce retransmission

requests.

The use of LBRM for WWW page caching and for

file caching are specific examples of a more general

use of LBRM for cache invalidation of all kinds; we

are investigating further generalization of this use of

LBRM.

Our work on the HTML browser could be extended

to use the full set of LBRM optimizations. LBRM

could be implemented as a dynamic protocol module

in an extensible browser such as HotJava [18].

l[n general, there is a need for multicast protocols

that allow receivers to determine how much loss they

are experiencing, recover missing data if they desire,

339

and recover the data within reasonable delay bounds

relative to the time of original transmission. As the

bandwidth available for multicast in the wide area

grows and as more DIS-like multicast applications are

deployed, we expect to see an increasing need for

receiver-reliable protocols, such as the LBRM protocol

we have presented.

Acknowledgements

The authors were supported by ARPA under contract

DABT63-9 1-K-0001 and by an equipment grant from

IBM. Hugh Holbrook was supported by a USAF

Graduate Laboratory Fellowship. Sandeep Singhal was

supported by a Fannie and John Hertz Foundation

Fellowship. Matt Zelesko and Jonathan Stone provided

helpful discussions that contributed to the development

of the ideas in this paper.

A Appendix: HTML Document

Invalidation Protocol

This appendix describes the implementation of our

HTML page invalidation protocol mentioned in Sec-

tion 4.3.

Each HTML file includes a comment in the first line to

associate a multicast address for invalidation messages.

For example, the line

<!~LTICAST.2s4C12,2g.720>

associates the file with multicast address 234.12.29.72.

Typically, all files from a single server would share

the same multicast address, though this is not a

requirement. When the Mosaic client first displays this

HTML file, it enters a subscription to the multicast

address. This subscription is retained as long as the

HTML file remains in the client’s cache.

Invalidation messages from the HTTP server take the

following form:

TRANS :17. O: UPDATE:

http: //TiTITvDSG. Stenf ord. EDU/groupMembers .html

This packet, which is the initial transmission of sequence

number 17 to this multicast group, invalidates the file

groupMembers . html in client caches. When updates are

not being transmitted, the server transmits Heartbeat

packets to the multicast group. For example, the packet

TRANS :17.12: HEARTBEAT

is the 12th heartbeat transmitted after update sequence

17.

When an update packet arrives, the client sets an

invalidation flag for the associated cached page. This

flag determines whether to highlight the RELOAD

button for the current displayed page. The flag is

cleared when the document has been reloaded from the

server.

Whenever the client detects that one or more updates

were lost, it starts a short retransmission request timer.

This delay allows out-of-order packets to arrive, and it

prevents NACK implosion at the source. After that

timer expires, the client requests any missing updates

from a logging process at the server host. The logger’s

response packet contains a list of retransmissions. For

example, a retransmission of update 17 would contain

the tag RETRANS instead of TRANS.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Armstrong, Susan M., Alan O. Freier, and Keith A.

Marzullo. “Multicast Transport Protocol.” In Internet

Requests for Comments (RFC 1301), February 1992.

ARPA. “STOW 97 Program Plan.”, May 1994.

Arthur, Kevin W., Kellogg S. Booth, and Colin

Ware. “Evaluating 3D Task Performance for Fish Tank

Virtual Worlds.” ACM Transactions on Injorrnatzon

Systems, 11(3):239-265, July 1993.

Bolot, Jean-Chrysostome, Thierry Turletti, and Ian

Wakeman. “Scalable Feedback Control for Multicast

Video Distribution in the Internet.” In Proceedings of

SIGCOMM 1994, pages 139-146, London, England,

August 1994. ACM SIGCOMM.

Chang, Jo-Mei and N. F. Maxemchuk. “Reliable

Broadcast Protocols.” ACM Transactions on Computer

Systems, 2(3):251-273, August 1984.

Cheriton, David R. and Dale Skeen. “Understanding

the Limitations of Causally and Totally Ordered Com-

munication. ” In Proceedings of the Ilth Sympostum on

Operattng Systems Principles, Asheville, NC, December

1993. ACM SIGOPS.

Cheriton, David R. and Winy Zwaenepoel. “Dis-

tributed Process Groups in the V Kernel.” ACM Trans-

actions on Computer Systems, 3(2):77–107, May 1985.

Floyd, Sally, Van Jacobson, Charley Liu, Steven

McCanne, and Lixia Zhang. “A Reliable Multicast

Framework for Light-Weight Sessions and Application-

Level Framing.” In Proceed~ngs of SIGCOMM 1995,

Boston, MA, August 1995. ACM SIGCOMM.

Gray, Carey G. and David R. Cheriton. “Leases:

An Efficient Fault-Tolerant Mechanism for File Cache

Consistency.” In Proceedings of the 12th Symposzum on

Operating Systems Principles, pages 202-210, Litchfield

Park, AZ, December 1989. ACM SIGOPS.

Harty, Kieran. Personal communication, December

1994. Dr. Harty is Manager of Advanced Technology

at Teknekron Software Systems in Palo Alto, CA.

Institute for Simulation and Training. “Standard for

Distributed Interactive Simulation—Application Proto-

cols (Version 2.0.4 Draft IEEE Standard) .“ Technical

340

Report IST-CR-94-50, University of Central Florida,

Orlando, Florida, March 1994.

[12] Jacobson, Van, “Congestion Avoidance and Control.”

In Proceedings of SIGCOMM 1988, pages 314-329,

Stanford, CA, August 1988. ACM SIGCOMM.

[13] Jacobson, Van. Multwnedia Conferencing on the

Internet. SIGCOMM 1994 Tutorial Notes. August 1994.

[14] Joseph, T. A. and K. P. Birman. “Reliable Broad-

cast Protocols.” In Mullender, S., editor, Distributed

Systems, pages 293-318. ACM Press, Addison-Wesley,

1989.

[15] Saltzer, J. H., D. P. Reed, and D. D. Clark. “End-To-

End Arguments in System Design.” ACM Transactions

on Computer Systems, 2(4):277–288, November 1984.

[16] Schulzrinne, H., S. Casner, R. Frederick, and V. Ja-

coboson. “RTP: A Transport Protocol for Real-Time

Applications.” November 1994. Internet draft, Work in

Progress.

[17] Singhal, Sandeep K. and David R. Cheriton. “Exploit-

ing Position History for Efficient Remote Rendering

in Networked Virtual Reality.” Presence: Teieopemtors

and Virtual Environments, 4(2):169–193, Spring 1995.

[18] Sun Microsystems. “The HotJavaTM Browser: A White

Paper.” 1995. Available from http: //java. sun. tom/.

[19] Thorpe, Jack A. “The New Technology of Large Scale

Simulator Networking: Implications for Mastering the

Art of Warfighting.” In Proceedings of the 9th lnterser-

vice\Industry Training System Conference, pages 157–

160, Washington, DC, November-December 1987.

[20] Whitlock, Adam H. “Draft Estimate of Bandwidth

Demand for STOW-97.” May 1995. Distributed by the

Naval Research and Development Center (NRaD).

341

