FreeOxy
Krishna Adavi, Scott Fulbright, Nathaniel Glass, and Ravi Kosuri
Abstract

Current web browsing leaves the client’s privacy and freedom to access information in the hands of his network administrator. Control over a machine through which all of a user’s traffic flows can be used to censor and track his Internet access. Proxying systems exist to circumvent this and allow greater freedom of browsing, but all current methods are ultimately centralized(except peek-a-booty[1]) and vulnerable to host blocking. We propose a peer-to-peer proxy system in the lines of peek-a-booty[1] that continues to perform under any of the methods used to shut down conventional proxy servers(like DoS attacks[7]). It also provides privacy, deniability, and anonymity to the user. We compare our approach to the one used by peek-a-booty[1].

1. Introduction

Existing proxy servers can provide several different services to their users. All provide circumvention of content censoring and anonymity, while some give the user privacy as well. Proxy servers fall in to one of two classes: small servers run by individual users and large-scale servers run by groups or companies. Both classes provide the aforementioned services, but both are also easy for a content filter administrator to shut down. Since both classes of server are ultimately centralized (each server is an individual entity operating in a vacuum – there is no intra-server communication), both can be shut down by blocking access to the host running the server or the port the server runs on. The larger scale servers are particularly vulnerable – though they frequently offer better service, there are so few that a firewall administrator (hereafter known as the ‘evil agent’) could easily discover and block them. (The task becomes even easier when they start being used by his network.) Smaller servers have a substantial numerical advantage (evil agents would have a much harder time finding and blocking all of them), but often offer less performance. Dissemination of host information to target users is also a problem, especially one doesn’t want that information being read by the evil agent. Additionally, users count on new small servers being created at least as fast as the evil agent can discover and block them. Also, as with all centralized designs, both large and small proxy systems do not respond well to increased demand (scale).
Peek-a-booty[1] attempts to address each of the above problems associated with centralized proxies by building a peer-to-peer distributed proxy network. Our approach is quite similar to peek-a-booty’s approach of building a P2P distributed proxy network, but differs in certain aspects which we outline here. The comparison is based on whatever little documentation that is publicly available on how peek-a-booty works. We borrow several concepts from Freenet[2], Gnutella[3] and Gnutella-like systems[4] and P2P systems like YOID[5] and Narada[6].
This document is organized as follows. In Section 2, we mention some related work that we borrowed concepts from. In Section 3, we explain in detail how the FreeOxy network is set up, the bootstrap mechanism for new servents to join the network, the mechanism for finding a FreeOxy server on the network that would fulfill our request, maintaining the network through periodic exchange of refresh messages and some possible vulnerabilities in our system and our solution for avoiding them. In Section 4, we compare our approach with peek-a-booty[1] and try to argue informally that our approach might be better(We do not have experimental results currently, so the arguments will have to be informal. Also, there is very little public documentation on the internal workings of peek-a-booty due to which some of our assumptions on peek-a-booty might be incorrect). Section 5 concludes the paper. Section 6 mentions some of the possible future work that would improve the current implementation of the FreeOxy servent, and some of the issues that we could not address.
2. Related Work
The only existing work that addresses the problem with centralized proxies in the domain that we consider here(firewalls restricting access to certain websites and web pages) seems to be peek-a-booty[1]. Freenet[2] provides anonymity to the users for accessing shared files, but does not address the problem for downloading blocked web pages. Gnutella[3] is a popular P2P system used for accessing shared files, but does not provide the anonymity that Freenet provides, and also does not address the problem under consideration. Much work has been done on trying to make Gnutella-like systems scalable with Gia [4] being a case in point. We made use of some of the concepts used by these systems, like the biased random walk that Gia[4] uses, to make our system scalable.
3. 1 Proposal

We refer to a FreeOxy peer as a servent in the spirit of Gnutella[3]. The peer-to-peer nature of FreeOxy solves most of the problems with conventional proxy servers. Since each FreeOxy user is potentially a proxy server, the number of potential servers grows with the number of users. This serves both to allow the network to handle demand well (as the amount of demand grows, so does the number of potential servers) and makes blocking based on host extremely difficult. In order to successfully shut down FreeOxy by host-blocking, an evil agent would first have to recognize all FreeOxy traffic (encrypted streams on random ports) going through his network. He would then have to discover and block new hosts at a rate comparable to a peer-to-peer network’s churn rate – relatively high. Due to the fact that FreeOxy runs over pseudo-random ports, it is also immune to well-known port blocking.

FreeOxy also provides privacy on multiple levels. Existing proxy servers that use encryption can provide the user with transit-privacy, but the owner of the server can still know exactly what the user was browsing. This allows proxy servers to track and possibly sell statistics on the browsing habits of their users. Since in order to receive a page from a proxy, that proxy must fetch the page, it is fundamentally impossible to prevent a proxy server from knowing what a user looks at. It is, however, possible to prevent the creation of browse-histories and statistics. In addition to providing transit-privacy via encryption, FreeOxy requests one page and it’s connected media from any particular servent before (likely) moving on to another one. This prevents the generation of browse histories and statistics by ensuring that no one server all of one user’s activities. A server is allowed to fetch connected media because it is safe to assume that a user who downloads an HTML page will also download the connected media. If a different server were used for each object on a page, the server that fetched the page itself could be very certain the user also downloaded the connected media. FreeOxy also prevents servers from knowing exactly who requested the page (discussed later).

All FreeOxy connections take place over an encrypted channel in order to prevent evil agents from blocking traffic based on content. The encryption is based on SSL.
3.2 Connection

Joining the FreeOxy network is simple: servents maintain a hostcache of pre-known nodes. To join, a servent chooses numOutgoing (configurable) of these hosts, calculates the ports they’re listening on (more on this later), and attempts to connect. If he fails to connect to any of the hosts on all of their ports, he chooses more from his hostcache, or, if the hostcache is exhausted, waits to learn about more active hosts. Additionally, servents never directly connect to servents on their subnet. It is likely that a servent on the same subnet is behind the same filter, therefore sending queries that you cannot satisfy straight to him serves little purpose.

Upon receiving a connection request from servent B, servent A will send B the addresses of all of his outgoing connections. This serves to increase B’s knowledge of the network. A will also increase the network’s knowledge of B by sending B’s address to all of his outgoing connections. If A has reached his incoming connection threshold (configurable), A then kicks B off, confident that B has enough new information to continue trying to connect to the network. The incoming connection threshold must be set higher than the number of desired outgoing connections to ensure that the network does not fill itself up.

Each servent listens on a set number of ports. The port numbers are calculated based on his IP address and the current day in GMT. To avoid a global network every midnight, a server merely changes the ports on which he listens. He does not close any active connections made to those ports.

3.3 Search

When a client’s browser requests a page from their locally running FreeOxy servent, that servent picks a random outgoing connection on which to send a query for that webpage. Queries take random walks through the network and therefore must have a (probably) globally unique ID to aid in routing. This ID as well as the address of the chosen next hop are added to the servent’s origination table (origTable).

Upon receiving a query “QUERY <id> <URL>”, a FreeOxy servent performs the following algorithm:

successful = false

if (!paranoid) {

 successful = fetch(URL);
}
if (successful) {
 port = rand() % (65535 – 1024) + 1024;

 proxyListen(port);
 send(B, “REPLY <id> <port> A.ipAddr”);

} else {
 outgoingCopy = outgoing.clone();
 next = outgoingCopy[rand() % outgoingCopy.size()];
 while(cantGet[next].contains(URL.server) ||

 forwardTable.contains(query, B, next)) {

 outgoingCopy.remove(next);

 if (outgoingCopy.empty()) {

 send(B, “QFAIL <id>”);

 }
 next = outgoingCopy[rand() % outgoingCopy.size()];
 }

 if (rand() % 10 == 0) {

 consumeTable.add(query, B);
 } else {

 forwardTable.add(query, B, next);

 }

 send(next, query);

}
Querying algorithm
If the servent is not operating in paranoid mode (a parameter set by the user), it attempts to fetch the webpage. Turning on paranoid mode causes a servent to run in pure client mode – it never attempts to fetch pages. This ensures the safety of users who are behind firewalls that prohibit the mere attempt to download censored pages. If the page was successfully downloaded, the servent picks a random ephemeral port and sets a normal proxy server listening on that port. He then sends a REPLY message that will be routed to the originator of the query.

If a servent is unable to fetch a page, he searches his outgoing connection list for a next hop. Each servent maintains for each outgoing connection a list of webservers that the connection is unable to satisfy queries for. The servent randomly chooses from his outgoing connection list until he finds an eligible next hop or the list is exhausted. An outgoing connection is eligible if it has not failed to fetch a page from the queried-for server in the past and we have not already forwarded this query to them. If servent A cannot find any eligible servers, it advertises this back along the query path by sending a QFAIL message towards the source of the query. The previous servent on the query path then marks A as not being able to fetch pages from the queried-for domain. This notion of eligibility also applied during query origination.

With a certain probability (10%), a servent will consume a query. This causes the servent to act as a man-in-the-middle for this query. He still forwards the query, but when he later sees a response traveling back along the path to its true source, he will not continue forwarding it. Instead, he will pick a random port and originate a new response with the same ID (therefore the same path-to-origin) that points at himself as the answer for that query. He listens on the chosen port for the query originator to connect, then connects to the true answer for the query and simply forwards traffic to the query originator. See the forwarding algorithm for more details.

if (origTable.contains(response.id, b.ipAddr)) {

 proxyClient(response.ip, response.port);

} else {

 if (fowardTable.contains(id, <any>, B) {

 next = forwardTable.getIncomingByIDAndOutgoing(id, b);

 send(next, response);

 }

 if (consumeTable.containsID(id)) {

 port = rand() % (65535 – 1024) + 1024;

 oldResponse = response;

 response.port = port;

 response.ip = myIP;

 send(consumeTable.getHostByID(id), response);

 forward(myIP:port, oldResponse.ip:oldResponse.port);

 }

}

Forwarding algorithm

Without consumption, a servent that answered a query would know exactly who originated the query. With it, a servent doesn’t know whether the person who connected to it was the true query originator or merely someone along the path who consumed the query. Multiple people could even consume the same query, forming a chain of forwarding. This possibility prevents even the consumers from being certain about who originated the query.

The other 90% of the time, servents will add the query ID and their chosen next hop to a list of forwarded queries. The servent will then forward the query to its chosen next hop. Upon receipt of a response that is not in the servent’s consume list, he looks up the next hop on the path towards the query originator and forwards the response towards the originator. To find the backwards-next-hop for a response received from B, A looks at the sender in the row of forwardTable with ID matching the response’s id and with next hop B. It is necessary to look up by next hop as well as id. Though a servent will never route the same query to the same place, he may receive a query he has already seen by means of a routing loop. This is actually desirable, as he can then forward it out an interface that he has previously not forwarded it to.

3.4 Network Maintenance

Liveness timers are maintained for all incoming and outgoing connections. In order to reset his liveness timer on servent B (on which servent A is an incoming connection), A will periodically send PING messages. Upon receipt of a PING message, servent A will reset the sender’s liveness timer. He will then behave as if the sender had just connected – send him a list of the addresses of all outgoing connections. This mechanism propagates changes in network composition due to churn. When a servent receives hostcache information, he resets his liveness timer for the sender of the information.

If a liveness timer for an outgoing connection expires, a servent will drop that outgoing connection and begin trying to make a new connection to fill the void. If a liveness timer for an incoming connection expires, a servent drops that incoming connection and becomes willing to accept one more incoming connection.

3.5 Proxying

When a query response is received by the query originator for a query that is in his origTable, he knows the address and port of a proxy server ready to fulfill his request. The originating servent will make a connection to his proxy server and mimic normal proxy operations. The servent could be connecting to a forwarding mechanism put in place by query consumption, but, since the consumer does nothing but forward traffic, this is transparent to the originator. As previously mentioned, it is very likely that a user who downloads an HTML page will download the connected media. Therefore nothing is gained in terms of privacy by having a different servent fetch each piece of connected media (in fact, doing these additional searches would dramatically increase load-time for pages). To keep this from happening, a servent who answers a query will actually do PHTTP-style proxying[9]. That is, after serving the initial page, he will continue to answer requests indefinitely. The originating servent will continue sending requests to him until a timer expires. This timer will be started every time a transaction with the proxy finishes. The timer should be set such that browsers will request connected media before the timer expires but user-think-time between pages is large enough to cause a timeout. Picking such a value should be easy – all of this is done locally so latency isn’t a concern, and browsers operate with sufficient speed to put a wide margin between their requests and the requests of the fastest user. When this timer expires, the originating servent will close his connection to the proxying servent.
3.6 Vulnerabilities

Due to the peer-to-peer, pseudo-random port nature of FreeOxy, an evil agent would be hard pressed to find a grand unified filter/firewall rule to shut down FreeOxy traffic. However, an evil agent could easily connect to a host and receive his outgoing list. He could then connect to all people in the outgoing list, and receive their outgoing lists. This mechanism would allow an evil agent to quickly discover addresses for the entire FreeOxy network. Blocking the FreeOxy ports for all servents would be difficult, as the block-list would have to be recalculated daily. Blocking all traffic to FreeOxy servents would be easier and just as effective. The danger here is not that FreeOxy servents are discovered and blocked, but that all currently running servents are discovered and blocked at once (hereafter referred to as snapshot discovery). This would completely cut all servents inside the firewall off from the FreeOxy network with no (automated) way of rejoining.

To prevent this method of global network discovery, each servent maintains a list of anti-discovery timers (ADtimer) and usage timers. When servent A successfully connects (B is not full) to servent B, B will send a message to all of his outgoing connections instructing them to increment their ADtimers for A by B.usageTimer[A] plus some constant. Servents will refuse connections from people with nonzero ADtimers. When an ADtimer expires, a usage timer is set for that client with initial value equal to the initial value of their ADtimer times some multiplier.

This method will greatly hamper clients who try for massive host discovery. Consider using a constant of 60 seconds and a multiplier of 10. Upon connecting to his first servent, the evil agent will receive a number of addresses. He will then have to wait one minute before being able to connect to them. Should he connect as soon as possible, he will receive more addresses. However, he will then have to wait 11 minutes to even be able to connect to these addresses. Should he connect to them as soon as possible, he will have to wait almost two hours before being able to make the next stage of connections. As knowledge of the network grows, the time it takes to gain more knowledge grows exponentially. Note that an evil agent could wait mult*const + const amount of time between rounds of discovery to avoid the exponential effect of the timers. The multiplier and constant should be chosen large enough that an evil agent attempting using this technique for snapshot discovery would go slow enough that the network’s churn rate would prevent them from ever getting a complete snapshot.

Normal users should not be effected by these timers. These timers hamper users who connect to many hosts quickly. A normal FreeOxy user will only do this if he continues to run in to full hosts. However, the timers are only used on a successful connection. Should a servent connect, receive host info, then be kicked off, timers will not be put in to place for him. Evil agents cannot benefit from this behavior, as the FreeOxy network would have to be mostly full for them to obtain a good snapshot. Since servents are required to accept more connections than they request, the network should never be sufficiently full.

Servents who do successfully connect have no reason to connect to more FreeOxy clients immediately. Should they try to anyways, strong resistance will not be encountered until a second round of reconnections. Note that this resistance is unlikely to be encountered at all – a servent would have to randomly choose a host who was an outgoing connection for one of the servent’s old outgoing connections. On a sufficiently large FreeOxy network, this is highly improbable.
4. Comparison with peek-a-booty

There is currently not much documentation publicly available on how peek-a-booty works. We base the following comparison on the few details that we could find about peek-a-booty.

Our approach also uses SSL for encrypting the data flowing between the connections in the proxy network, just like peek-a-booty does. Our approach, however, uses the concept of maintaining a persistent connection at the application-overlay level(similar to the concept used in Mogul’s P-HTTP[9]). We believe this will make our approach noticeably faster than peek-a-booty(assuming that all other parameters, like the average number of hops to fetch a web page remain the same).

Peek-a-booty uses random forwarding based on probability and eschews TTL to provide anonymity. Our approach also uses biased random-walks, with the bias being determined by how often a particular servent fetches similar web pages(to the one requested) successfully. Also, our approach borrows from Freenet’s[2] approach of letting each servent randomly decrement the TTL or leave it unchanged, which would provide the necessary anonymity.
Peek-a-booty, as it currently exists, uses an out-of-band bootstrap mechanism to find the initial servents to connect to in the distributed FreeOxy network(for ‘security reasons’, which leads us to believe that peek-a-booty works by providing security through obscurity). Our approach proposes a bootstrap mechanism that does not assume any such out-of-band mechanism, but still ensures security and prevents DoS attacks(Please see section 3.2 for the bootstrap mechanism).
5. Conclusion

Our proposed FreeOxy is a robust peer-to-peer proxy system that handles increased demand well, provides anonymity, deniability, and a very high level of privacy, and is resistant to attempts to shut it down. Anonymity is provided by the basic nature of a proxy server. Deniability is provided by the query consumption mechanism, and privacy is provided by the random-walk nature of searches and the encryption used on all FreeOxy traffic.

6. Future Work

Our approach currently uses SSL as the encryption mechanism, just as peek-a-booty does. We worked on using a one-time pad solution that is much faster than the SSL approach and should provide reasonable level of security, but it wasn’t feasible to use for the current state of our implementation.

We also think it would be possible to come up with better bias metrics for directing our random walk that would improve the performance of the FreeOxy network. How we determine the bias remains future work. Making the bias be determined by classifying the websites in a more broad-based approach than the current one, based on which FreeOxy servents can fetch them, remains a promising option.

Our current design of the FreeOxy network prevents DoS attacks, but it is still vulnerable to a well-coordinated distributed DoS attack(See [7] for details on how DDoS works). The solution to this problem also remains future work.
7. References

[1] http://www.peek-a-booty.org Official site of peek-a-booty.

[2] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. FreeNet:A Distributed Anonymous Information Storage And Retrieval System. ICSI Workshop on Design Issues in Anonymity and Unobservability, July 2000
[3] http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf The Gnutella protocol specification v0.4 .
[4] Yatin Chawathe and Sylvia Ratnasamy and Lee Breslau and Nick Lanham and Scott Shenker Making Gnutella-like P2P Systems Scalable, Proceedings of SIGCOMM 2003.
[5] Paul Francis and Yuri Pryadkin and Pavlin Radoslavov and Ramesh Govindan and Bob Lindel. YOID: Your Own Internet Distribution.

[6] Yang-hua Chu and Sanjay G. Rao and Hui Zhang. A Case For End-System Multicast. Proceedings of ACM Sigmetrics 2000.
[7] http://www.denialinfo.com/ Resources for learning about Denial of Service attacks.

[8] http://212.100.234.54/content/archive/24099.html Information on how peek-a-booty works.

[9] Jeffrey C. Mogul. The Case For Persistent-Connection HTTP. In Proceedings of ACM SIGCOMM 1995, pp. 299-313, Cambridge, MA, August 1995.
