
 

© Michael J. Donahoo                                                                                                                                                                19 Sep. 2023 

Programming Assignment Requirements 

 

Note the following requirements for ALL programming assignments throughout the entire semester: 

General 
• THE OVERRIDING RULE IS: KEEP IT SIMPLE!!!!!! In general, a simpler program works for some cases is better than a 

complicated program that does not work for any cases. Programs that fail to compile will receive a 0. 

• Your programs must demonstrate good design with efficient implementations. You are responsible for all of the implementation, 

including when a generated/default/inherited implementation is provided (e.g., toString in Java). 

• You must precisely follow the complete specification for any assignment; however, any given specification (interface, classes, 

tests, etc.) defines the minimum. It does NOT, in any way, prevent you from having additional classes and methods. In fact, a 

good design will likely have additional elements. This does not prevent you from having less restrictive access permissions. Any 

interface specification is just for the prototype information (e.g., class/method name, parameter/return types, static or non-static). 

Determination of which classes/methods should be abstract and/or overridden is yours according to good design. 

• Distrust any external (i.e., from network, users, files, telepathy, etc.) input. 

• Your programs should not print anything to the console unless specifically instructed to do so. In particular, unit test and library 

classes should print nothing to the console. Of course, when appropriate, you should output to a log. 

• Your program should gracefully handle problems such as system call failures, bad input, etc.  Graceful means that it gives a 

useful message and follow the protocol.  If terminating, your program should return a code that is useful for debugging specific 

failure explanation.  Your program must NEVER terminate outside of your control (e.g., termination due to exceptions, faults, 

etc.).  This includes parameter usage.  Even if the book examples terminate ungracefully (e.g., by throwing 

IllegalArgumentException), your program may NOT do this. 

• Friendly heads-up: The programming assignments may build on one another. This means that each program may depend on one 

or more of its predecessors. 

• Make sure you follow all Coding Conventions/Guidelines and preparation instructions from the class web page, assignment 

instructions, and deliverable specifications. 

• Test your program thoroughly. Testing should be automated. For unit tests, use a code coverage tool to make sure you test every 

testable line.  

• Always run your tests on your final submission. Do not fully test, then make one last change that you “know” won’t break 

anything, and then submit. 

Upload 
• You will submit your code as a zip file to the upload site at http://csi-info.baylor.edu/upload. Your archive should contain ONLY 

source code files (e.g., no compiled files). Your code should be contained in directories corresponding to their packages; no other 

directories should be used in your archive. Your program must contain all files necessary for self-contained, command-line 

compilation and execution except standard (e.g., libc) and provided libraries. 

• Any path in your code must be relative to your submission directory structure (e.g., NOT C:\Users\Phil\log.log). You can place 

such files at the top-level (i.e., at the same level as the top-level package directories) as this will be the default working directory 

for the JVM. You should test with the command-line (e.g., javac and java) to make sure it works.  Log files must always be 

created in the JVM working directory.  Servers should always start with an empty log file (no append). 

• Keep a copy of your final submission. This will be helpful when you are running my tests against your final submission. 

• Make sure that you verify the timestamp displayed on the upload site by checking the date and time. If either does not match your 

expectation, resubmit. You should begin your final submission at least 15 minutes before the due date/time to ensure you can 

retry if problems occur. 

• Starting from two days after you receive an assignment, you are required to upload the latest version of your program to the 

upload site on every even day leading up to the due date as well as the final due date. Each version should show steady, 

meaningful progress. For example, if the assignment is given on the 12th, you must start your every even day submission on the 

14th. If the assignment is given on the 15th, you must start your every even day submission on the 18th.  Every even day does 

include weekends.  You do not have to submit on even university holidays. 

• Always run Test Program on your final submission on the upload site. You should either see nothing or SUCCESS. Anything else 

is a potential problem that may require correction. 

• For each assignment, you MUST turn in solutions for all previous assignments. For example, when you turn in Program 2, it 

must contain everything from Program 0 and Program 1. Each submission should be fully contained (i.e., the grader will not 

frankenstein previous and current submission together to get a working version). Code from previous assignment must be 

corrected; note well that code from previous assignments may be graded. 

• For hard copies (only if required), you only need to print source files that are new for this current assignment. Make sure your 

hard copy includes all code (e.g., including code collapsed by IDE). Code should be printed landscape with two columns; format 

your code such that such printing does not add line breaks. Your printed code should be easily readable. Source hardcopies should 



 

© Michael J. Donahoo                                                                                                                                                                19 Sep. 2023 

be submitted in alphabetical order (case insensitive) by public class name. The package name is part of the class name (sample 

print ordering: pkg1.class2, pkg2.class1, pkg2.class3). 

Java 
• Your program must be written using appropriate facilities in the latest (as of the first day of class) release (General Availability) 

of Java. You may only use standard, non-preview language features. 

• For JUnit testing, you must use the latest (as of the first day of class) production release of JUnit. 

• Your Java program must compile, execute, and pass all testing on the ECS Linux machines. Your solution should pass testing on 

any OS. 

C/C++ 
• For C and C++, your program must compile with the default gcc/g++ on the ECS Linux machines. You may certainly add options 

to change the C/C++ standard used for compilation. 

• Your programs must pass all testing on the ECS Linux machines. 

• At a minimum, compile gcc/g++ with: -Wall -Wextra -Wpedantic -Wconversion 

• You must test your programs with appropriate tools for memory leaks/faults, open descriptors, etc.  At a minimum, you should 

use valgrind.  Recommended options --tool=memcheck --show-reachable=yes --leak-check=full --track-fds=yes. 

Specifications/Protocols 
• Specifications/Protocols are written, not spoken. Make sure anything you rely on for your implementation is written in the 

specification or in any addendums. 

• The provided specification (including any updates on Canvas) is the sole authority. Information from other sources, including the 

upload site, are not authoritative. 

• Your protocol implementations should be robust; they should gracefully handle failures, whether accidental or malicious. 

Implementations must 1) assume failures are common and 2) behave defensively (i.e., input is not to be trusted). The applicable 

adage is that you should "be conservative in what you believe." The Heartbleed vulnerability failed in this respect because it 

believed that the message length in the message header was the actual message length; hackers took advantage of this misplaced 

trust. Implementations should also expose errors. Violations of the protocol specification should generate errors. For example, if 

you expect "123" and get "123ABC", it should be failure that generates an error. Note well that this may contradict a long-held 

Internet principle to be "conservative in what you send and liberal in what you accept." In this case, you might ignore the ABC at 

the end because you got the 123). For this class, we'll go with strict protocol adherence. Some examples of how this applies 

include (but are not limited to): 

o Reject messages with extraneous bytes 

o Reject messages with explicitly incorrect values. For example, if the protocol specifies that a bit must be 0, then reject if it is 

1. If the protocol does not specify the semantics or values, you should not reject (i.e., just ignore). For example, if a bit is 

"RESERVED" but no value is specified, then you should completely ignore the value. 

Why this approach? The idea is that this may provide better security. In addition, for new protocols, a strict interpretation will 

help avoid implementation oddities creeping into the protocol for the sake of compatibility (e.g., We've changed the protocol to 

allow X because the major implementations already do X and we don't want to break things). Note that there is not general 

agreement on this. Some would say be "liberal in what you accept" and that such strictness 2) limits flexibility in protocol 

evolution and 2) in the case of inevitable protocol ambiguity may result in two complaint endpoints not being able to 

communicate. 


