
Exploring Endian

As you read from Section 3.2 of TCP/IP Sockets in C: Practical Guide for Programmers,
different architectures use different byte ordering for multibyte quantities. A big-endian machine
places the most significant byte in the lowest address while a little-endian machine places the
least significant byte in the lowest address. To avoid confusion when communicating between
different architectures, the Sockets interface specifies a standard byte ordering called network-
byte order, which happens to be big-endian. Consequently, all network communication should
be big-endian, irrespective of the client or server architecture. Sockets provides a set of macros
to convert to and from host to network byte order(i.e., [hn]to[nh][sl]()).

Consider the following C program:

#include <stdio.h>

main() {
int i; /* Loop variable */
long x = 0x112A380; /* Value to play with */
unsigned char *ptr = (char *) &x; /* Byte pointer */

/* Observe value in host byte order */
printf("x in hex: %x\n", x);
printf("x by bytes: ");
for (i=0; i < sizeof(long); i++)
printf("%x\t", ptr[i]);

printf("\n");

/* Observe value in network byte order */
x = htonl(x);
printf("\nAfter htonl()\n");
printf("x in hex: %x\n", x);
printf("x by bytes: ");
for (i=0; i < sizeof(long); i++)
printf("%x\t", ptr[i]);

printf("\n");
}

This program shows how the long variable x with value 112A380 (hexadecimal) is
stored. When this program is executed on a little-endian processor, it outputs the following:

x in hex: 112a380
x by bytes: 80 a3 12 1

After htonl()
x in hex: 80a31201
x by bytes: 1 12 a3 80

When we examine the individual bytes of x, we find the least significant byte (0x80) in the
lowest address. After we call htonl() to convert to network byte order, we get the most
significant byte (0x1) in the lowest address. Of course, if we try to print the value of x after
converting its byte order, we get a meaningless number.

Let’s execute the same program on a big-endian processor:

x in hex: 112a380
x by bytes: 1 12 a3 80

After htonl()
x in hex: 112a380
x by bytes: 1 12 a3 80

Here we find the most significant byte (0x1) in the lowest address. Calling htonl() to convert to
network byte order does not change anything because network byte order is already big endian.

