TCP/IP Sockets in C:
Practical Guide for

!'_ Programmers

Michael J. Donahoo
Kenneth L. Calvert

i Computer Chat

= How do we make computers talk?

= —n
L L

= How are they interconnected?

Internet Protocol (IP)

ilnternet Protocol (IP)

= Datagram (packet) protocol

= Best-effort service
= Loss

= Reordering

= Duplication

= Delay

= Host-to-host delivery
(not application-to-application)

i IP Address

= 32-bit identifier
= Dotted-quad: 192.118.56.25
= Www.mkp.com - > 167.208.101.28

= Identifies a host interface (not a host)

_“'—‘&-;.‘:‘: :=;:.:-:=:'::?

— 209.134.16.123

192.18.22.13

—

iTransport Protocols

Best-effort not sufficient!

= Add services on top of IP

= User Datagram Protocol (UDP)
= Data checksum
= Best-effort

= Transmission Control Protocol (TCP)
= Data checksum
=« Reliable byte-stream delivery
=« Flow and congestion control

i Ports

Identifying the ultimate destination
= [P addresses identify hosts
= Host has many applications
= Ports (16-bit identifier)
Application WWW E-mail Telnet

Port z;NST /'3
g
| 192.18.22.13

i Socket

How does one speak TCP/IP?

= Sockets provides interface to TCP/IP
= Generic interface for many protocols

i Sockets

= Identified by protocol and local/remote
address/port
= Applications may refer to many sockets

= Sockets accessed by many applications

i TCP/IP Sockets

= mySock = socket(family, type, protocol);
= [CP/IP-specific sockets

Fa m||y Type Protocol
TCP SOCK_STREAM IPPROTO_TCP
PF_INET
UDP SOCK_DGRAM IPPROTO_UDP

s Socket reference
= File (socket) descriptor in UNIX
= Socket handle in WinSock

= struct sockaddr

unsigned long s_addr;

O
= {
)
GC) char sa_data[14];
O }i
= struct sockaddr_in

{
S
=
O
) .
Q. char sin_zero[8];
g_) }i
— struct in_addr

{

}i

unsigned short sin_port;
struct in_addr sin_addr;

unsigned short sa_family; /* Address family (e.g., AF_INET) */

[* Protocol-specific address information */

unsigned short sin_family; /* Internet protocol (AF_INET) */
/* Port (16-bits) */
/* Internet address (32-bits) */

[* Not used */

/* Internet address (32-bits) */

sockaddr| Family

2 bytes

2 bytes

4 bytes

Blob

8 bytes

sockaddr_in Family

Port

Internet address

Not used

iCIients and Servers

a Client: Initiates the connection

Client: Bob Server: Jane

“Hi. I'm Bob."—

<«—— "Hi, Bob. I'm Jane”

“Nice to meet you, Jane.”" —

= Server: Passively waits to respond

iTCP Client/Server Interaction

Server starts by getting ready to receive client connections...

Client Server
Create a TCP socket 1. Create a TCP socket
2. Assign a port to socket
3. Set socket to listen

Establish connection
Communicate

Close the connection 4. Repeatedly:
. Accept new connection

b. Communicate
.. Close the connection

TCP Client/Server Interaction

/* Create socket for incoming connections */
if ((servSock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
DieWithError("socket() failed");

Client Server

Create a TCP socket 1. Create a TCP socket
Establish connection 2. Bind socket to a port
Communicate 3. Set socket to listen

Close the connection 4. Repeatedly:
. Accept new connection

b. Communicate
.. Close the connection

‘_HTCP Client/Server Interaction

echoServAddr.sin_family = AF_INET; /* Internet address family */
echoServAddr.sin_addr.s_addr = htonl(INADDR_ANY);/* Any incoming interface */
echoServAddr.sin_port = htons(echoServPort); /* Local port */

if (bind(servSock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
DieWithError("bind() failed");

Client Server

Create a TCP socket i. Create a TCP socket
2. Bind socket to a port

3. Set socket to listen
Repeatedly:

a. Accept new connection
». Communicate

. Close the connection

Establish connection
Communicate
Close the connection 4

iTCP Client/Server Interaction

/* Mark the socket so it will listen for incoming connections */
if (listen(servSock, MAXPENDING) < 0)

DieWithError("listen() failed");

Client
Create a TCP socket
Establish connection
Communicate
Close the connection

Server
Create a TCP socket
Bind socket to a port
Set socket to listen
Repeatedly:
a. Accept new connection
». Communicate
.. ~Close the connection

iTCP Client/Server Interaction

for (;;) /* Run forever */

{
clntLen = sizeof(echoClntAddr);

if ((cIntSock=accept(servSock,(struct sockaddr *)&echoClntAddr,&clntLen)) < 0)
DieWithError("accept() failed");

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Bind socket to a port
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

iTCP Client/Server Interaction

Server is now blocked waiting for connection from a client

Later, a client decides to talk to the server...

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Bind socket to a port
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

iTCP Client/Server Interaction

/* Create a reliable, stream socket using TCP */
if ((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
DieWithError("socket() failed");

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Bind socket to a port
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

‘_HTCP Client/Server Interaction

echoServAddr.sin_family = AF_INET; /* Internet address family */
echoServAddr.sin_addr.s_addr = inet_addr(servIP); /* Server IP address */
echoServAddr.sin_port = htons(echoServPort); /* Server port */

if (connect(sock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
DieWithError("connect() failed");

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Bind socket to a port
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

iTCP Client/Server Interaction

if ((cIntSock=accept(servSock,(struct sockaddr *)&echoClntAddr,&cintLen)) < 0)
DieWithError("accept() failed");

Client Server
Create a TCP socket 1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen

Establish connection

Communicate

Close the connection 4. Repeatedly:
a. Accept new connection

b. Communicate
.. Close the connection

‘_HTCP Client/Server Interaction

echoStringLen = strlen(echoString); /* Determine input length */

/* Send the string to the server */
if (send(sock, echoString, echoStringLen, 0) != echoStringlLen)
DieWithError("send() sent a different number of bytes than expected");

Client Server
Create a TCP socket 1. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen

Establish connection

Communicate

Close the connection 4. Repeatedly:
a. Accept new connection

b. Communicate
.. Close the connection

TCP Client/Server Interaction

/* Receive message from client */
if ((recvMsgSize = recv(cIntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0)
DieWithError("recv() failed");

Client Server
Create a TCP socket i. Create a TCP socket
2. Bind socket to a port
3. Set socket to listen
Repeatedly:
a. Accept new connection
». Communicate
.. ~Close the connection

Establish connection

Communicate
Close the connection 4.

iTCP Client/Server Interaction

close(sock);

Client
Create a TCP socket
Establish connection
Communicate

Close the connection

close(cIntSocket)

a.

b.

C.

Server
Create a TCP socket
Bind socket to a port
Set socket to listen
Repeatedly: <
Accept new connection
Communicate
Close the connection —

iTCP Tidbits

= Client must know the server’s address and port
= Server only needs to know its own port
= No correlation between send() and recv()

Client Server
send(“Hello Bob")

recv() -> “Hello ”

recv() -> “Bob”

send("Hi ")

send("Jane”)
recv() -> “Hi Jane”

iCIosing a Connection

= close() used to delimit communication
= Analogous to EOF

Echo Client Echo Server

send(string)
recv(buffer)
while (not received entire string) while(client has not closed connection)
recv(bufrer) send(buffer)
print(buffer) recv(buffer)
close(socket)

close(client socket)

!'_ Constructing Messages

...beyond simple strings

*TCP/IP Byte Transport

Application

byte|stream

Here are some
bytes. I don't

know what

they mean.)

= TCP/IP protocols transports bytes

Application

byte|stream

I'll pass
these to
the app. It
knows
what to do.~

= Application protocol provides semantics

iAppIication Protocol

= Encode information in bytes

= Sender and receiver must agree on
semantics

= Data encoding
= Primitive types: strings, integers, and etc.
= Composed types: message with fields

i Primitive Types

= String
= Character encoding: ASCII, Unicode, UTF
=« Delimit: length vs. termination character

0 /77 | 0 111 | O 109 | O 10

M 0 m \n

3 77 111 109

i Primitive Types

= Integer
= Strings of character encoded decimal digits

49 | 55 57 57 56 55 48 10
\1’ \7I \9’ \9’ \8I \7’ \OI \n

= Advantage: 1. Human readable
2. Arbitrary size
= Disadvantage: 1. Inefficient

2. Arithmetic manipulation

i Primitive Types

= Integer
= Native representation

Little-Endian | O 0 92 | 246 4-byte

23,798 two’s-complement
integer

Big-Endian [246 | 92 0 0

= Network byte order (Big-Endian)

= Use for multi-byte, binary data exchange
= htonl(), htons(), ntohl(), ntohs()

i Message Composition

= Message composed of fields
» Fixed-length fields

integer

short

short

= Variable-length fields

M

i | k

S

“Beware the bytes of padding”
i -- Julius Caesar, Shakespeare

= Architecture alignment restrictions
= Compiler pads structs to accommodate

struct tst {

short x;

short z;
b
= Problem: Alignment restrictions vary
= Solution: 1) Rearrange struct members

2) Serialize struct by-member

	TCP/IP Sockets in C: Practical Guide for Programmers
	Computer Chat
	Internet Protocol (IP)
	IP Address
	Transport Protocols
	Ports
	Socket
	Sockets
	TCP/IP Sockets
	Clients and Servers
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Client/Server Interaction
	TCP Tidbits
	Closing a Connection
	Constructing Messages
	TCP/IP Byte Transport
	Application Protocol
	Primitive Types
	Primitive Types
	Primitive Types
	Message Composition
	“Beware the bytes of padding” -- Julius Caesar, Shakespeare

